

Belimo Energy Valve™ Delta T Manager™

Measures Energy Controls Power Manages Delta T

Presentation Agenda

- Low Delta T at the Coil
- Some of Low Delta T Causes
- Low Delta T
 - Cost of Overflowing Coil
 - Cost of Chiller Staging
 - Cost of Over Pumping
 - Occupant Comfort
- Does it Really Work?
- Benefits

Low Delta T at the Coil

Low Coil Delta T = Inefficient

Heat Transfer

Increase GPM >> No Increase in Energy output

More Pump HP >> Reduction in Plant Efficiency

Low Delta T Some of Low Delta T Causes

Low Control Set Point

Fouled Coils

Low Valve Authority

Low Delta T Coil Power vs Delta T Behavior

Low Delta T Cost of Overflowing the Coil...

Low Delta T Cost of Overflowing the Coil...

	1	2	Δ
BTUh	330,000	335,000	1.5%
GPM	55 GPM	65 GPM	18%
Pump hp	Hp increase = (65/55) ³		65%

$$\frac{HP_2}{HP_1}$$
 $\frac{GPM_2}{GPM_1}$

Delta T Manager[™] **Cost of Chiller Staging**

BELIMO

Chiller Plant Efficiency

Design Condition

- Design $\Delta T=12^{\circ}F$ (54°F 42°F)
- 360 GPM
- 1 Chiller, 90% Load (180 Ton)

Delta T Manager[™] **Cost of Chiller Staging**

Chiller Plant Efficiency

Low ΔT

- $\Delta T = 10.4^{\circ}F$ (52.4°F 42°F)
- 415 GPM
- 2 Chillers, 45% Load (180 Ton)

No change to the load, but a 2nd Pump and 2nd Chiller are started.

Low Delta T Cost of Over Pumping

Delta T Manager[™] **Occupant Comfort**

"How can I let the Delta T Manager limit flow if it doesn't measure discharge air temperature?

What about occupant comfort?!?"

Delta T Manager[™] **Occupant Comfort**

Delta T Manager adjusts the valve if the ΔT drops below the set point in order to maintain peak coil efficiency

Delta T Manager™

Case Study Large Tech Company in North Carolina

Delta T vs. Tons - B500 AHU3

Case Study MIT University Hayden Library - Boston, MA

Building and Project Details

- 150,000 sq. ft. on 3 floors
- 6 AHU provide majority of the cooling

Results

Aug 9 - Oct 9, 2010
 AT = 6.15°F

Aug 9 - Oct 9, 2011
 ΔT = 12.14°F

Case Study University of Miami Hospital

Building and Project Details

- Rosenstiel Building
- 11 AHUs
- 2600 Tons of Cooling
- Over 10,000 GPM

Results

Delta T raised from

5.5°F to 10.5°F

- Flow ~ 5600 GPM
- Estimated \$66,000/yr savings
- Estimated 2.9 year payback

Delta T Manager™ Benefits

Coil

- AT Managing for peak coil efficiency
- Optimization in retro-fit applications

Chiller Plant

- Improved chilled water plant efficiency
- Released chiller capacity

Pump

Reduced pump energy

Occupant Comfort

No reduction in supplied energy

